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SUMMARY

Formulas for the wave drag of shrouded symmetrical airfoils and
shrouded bodies of revolution of arbitrary shape are derived by means of
linearized theory. In the case of the airfoils the shroud consists of
flat plates, and for the bodies of revolution the shroud is a cylindrical
shell., The results obtained hold for a Mach number range dependent on
the geometry of the configuration. Expressions are also given for deter-
mining a class of body shapes for which the wave drag is theoretically
zero,

INTRODUCTION

A body moving at supersonic speeds has a wave drag which can be cal-
culated either from integrations based upon the pressure at the surface
of the body or by means of a momentum balance over a control surface sur-
rounding the body. The control-surface approach shows more clearly that
the wave drag is related to the trensport of momentum in the Mach waves
created by the body. This approach also suggests the scheme of reducing
or destroying the wave drag through the use of a shroud as first shown by
Ferrari (ref, 1). With. such a shroud the waves are caught and reflected
to the body surfaces where they may be absorbed without further reflec-
tion, From the standpoint of the pressure exerted on the body itself,
it follows that the reflected waves may strike the rear portion of the
body in such a way as to provide a buoyancy to overcome the resistance
of the body alone, The detrimental effect of the additional friction drag
due to a shroud is not included in the present study.

The principal object of the present investigation is to derive for-
mulas for the wave drag of shrouded symmetrical airfoils and shrouded
bodies of revolution of arbitrary shape., The airfoil is shrouded by flat
plates and the body of revolution is shrouded by a cylindrical shell,
Although many configurations are possible, the analysis here considers
the particular arrangement where the shroud extends at least far enough
forward to catch the Mach wave emanating from the body nose, and faxr
enough rearward to cast Mach waves on the base of the body. As a special
epplication of the resulis obtained, a class of body shapes, similar to
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those given by Busemann (ref. 2) and Ferri (ref. 3), are found for which
the wave drag is theoretically zero,

For either the case of the airfoil or the body of revolution, the
analysis is based on the assumption of linearized theory and on opera-
tionel methods using Laplace transforms, Ward (refs. 4 and 5) has shown
in considerable detail how operational calculus can be employed to treat
bodies of revolution and quasi-cylindrical tubes., A similar approach will
be followed here, except that Heaviside notation is not used.

To the order of the analysis employed, discontinuities in the slope
of the airfoill are admitted, while for the body of revolution the gradient
of cross-sectional area and its derivative are assumed to undergo no
abrupt changes. In actual practice, discontinuities producing fixed com-
pression waves would certainly upset the accuracy of the results even more
than for the airfoil or the body alone since the opposing surfaces offer
the possibility of shock-wave and boundary-layer interaction,

SYMBOLS
ag speed of sound in free stream
A,B cross-sectional area of body in dimensionless terms, Bihé
o
e section drag coefficient, ED—l
o]
c body drag coucfficient
D y g <. 2 qosf
. p - po
Cp pressure coefficient, -To—
D wave drag
£ function defined in equation (5), ﬁ
o
F function defining upper surface of airfoil or generating

curve of the body of reVolution
g function satisfying relation (53)

h distance of shroud from x axis
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;i:i;:;i’} Bessel functions (ref. 6)
1 length of body, or chord length of airfoil
o Eﬁzoh
Mo Mach number in the free stream
P locel pressure
Po pressure in free stream
q, free-stream dynamic pressure, -F%oz-
R radius of body
S(x) cross-sectional area of body
Se frontal area of body
to maximum thickness of body
Uo free-stream velocity -
b4 Cartesian coordinate in free-stream direction
y Cartesian coordinate, measuring v;artical distance for airfoil
and radial distance for body
Y, - Bessel function (ref. 6)
Bo Mo® - 1
1 dimensionless variasble introduced in equation (L), %
11 Mach angle, arc sin 3
Mo
£ dimensionless varisble introduced in equation (L), -Boih
Po ‘free-stream density
o(E,n) perturbation velocity potential in dimensionless terms, o(x,y)

Toh
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o(x,y) perturbation velocity potential
Q influence function defined in equation (35)
() Iaplace transform of function
MATHEMATTCAYT, STATEMENT OF PROBLEM
Y| chy=x Consider a symmetrical airfoil
y=1/48,=h By =l-x OF slender body of revolution placed
~ /_ — / at zero angle of attack at Mach number
Uo,Mo 4 A N FR) My = Uo/ap > 1, where a, is the
/ N, Y™ gpeed of sound in the free stream and
0(’74_5 - >,y where Ugp, the free-stream velocity,
N, Bh 2Bh. yd is alined with the x axis. The ¥y
N / . yd axis measures vertical distance in
N N the case of the airfoil and radial
distance in the case of the body.
14—+ 172 +—1a— The nose of the body is at the origin
(B.h=1/4) of the coordinate system.
Sketch (a) In the configurations to be con-
=h sidered the airfoil is shrouded by
/— two flat plates and the body of revo-
NN lution is shrouded by a cylindrical
TN ‘\\ tube. The shrouding plates (or tubes)
. > are placed so that the distance h
<< x by which the shroud is removed from the
&F /,,«'Zﬂoh,\,'\’ 1 x axis is such that 1/k < Boh < 1/2,
\ .. S ’/"
o ><\\// where By = cot p =JM° - 1andl

(1/4<B,h<1/2)
Sketch (b)

[

Bo h g -

~.
~. "

(8.h>1/2)
Sketch (c)

is the body length. The shroud is
required to extend at least from

X = Boh to x =1 - Bpoh, but it would
produce no additional effects on the
body if it were longer. Sketches (a),
(b), and (c) show the geometry of the
configuration with either the airfoil
or body of revolution in three typi-
cal arrangements. If Boh = 1/4, all
the Mach waves from the forward por-
tion of the body are reflected onto
the rearward, and when Bgh > 1/2
there is no effect of the shroud since
the waves are reflected behind the
body.



NACA TN 3718 5

The upper surface (or generating curve) of the airfoil or body is
assumed given by the function

y=Fx (1)

It will also be assumed that the body closes at both ends (i.e., that
F(0) = F(1) = 0) and that the thickness-length ratio of the body is suf-
ficiently small relative to the Mach angle p that linearized theory
applies. As a result, the perturbation velocity potential o(x,y)
satisfies the partial differential equation

BO_-_-}_r'a';_o (2)

together with the boundary conditions

yl3_¢> - &

(3)
LQ =0 h -
(UO ayy=h ? BO st : BOh

where the parameter v equals O and 1, respectively, for the airfoil
end body of revolution. One then has the problem of finding a solution
of ¢, and from this to determine the drag of the configuration.

If dimensionless variables £, 1, ¢ defined by the relations

E=x/Boh , a=y/h, o(&n) =e(xy)/lon (¥
are now introduced, the expression [
.for the body surface, as given by AN

equation (1), becomes

(5)

with m = 285h/1, and sketch (b)

becomes sketch (d). The differen-
tlal equation is then

(I/2<m<])
Sketch (4)
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3_29._9.2&_ ﬁ.:o (6)

(n" S = (pot)” &= 0<t<2/m
o

<%‘§>=1=o, 1<t<2m-1

Operational methods based upon the Laplace transform are suited for
treating the basic differential equation (6) for either the airfoil or
the body of revolution. Denoting the Laplace transform of a function

g(e,n) by 8(s;n) where

(7

&(s3m) = f e~5Eg(E,m)at 8)
(o]

and employing this trensformation for relations (6) and (7), one obtains
the differential equation

2.
.88 _v¥_
saq) anz M an 0 (9)
together with the boundary -conditions
- 'v df
<nv %% =B e (Bo)” 2 ag (102)
o .

) @),

Once § has been determined from equation (9), the drag of the shrouded
figures can be calculated. In order to carry out the calculations, it is
convenient to treat the airfoil and body-of-revolution problems separately.
The analysis for the airfoil offers little in the way of novelty but will
be given first since it illustrates the framework of the methods employed.
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ATRFOIL WITH SHROUDING PLATES

Evaluation of Wave Drag

The solution of equation (9) for the case of the airfoil (i.e. ,
vhen v = 0) is

®(s3n) =a(s)e™®N 4+ p(s)es - (11)

Since vertical symmetry exists in the flow field » attention can be limited
to the upper half of the figure. Over the forward part of the airfoil the
downstream inclination of the outgoing waves indicates, furthermore, that
the second term in the answer (11) can be deleted. Imposing the boundary
condition (10a), one then has

[

-sa(s)e-sn]n=°= sf , a(s)=-%

and it follows that the perturbation velocity potentisl satisfies the
relations

o(s;n) = - F~50

(122)
o(&,m) = - £(¢ - n)
or, in terms of the physical varisbles,
U,
¢&J)=-£T&-Bw), 0<x-Boy<ml - 28y (12v)

where m=2Boh/7., 1/25m51.

The flow around the forward portion of the airfoil is given by equa-
tions (12); in order to predict the flow around the rearward portion ,
however, it is necessary to determine the nature of the incoming waves
from the plate. The velocity potential of these incoming waves cen be
obtained from the second term in the right member of equation (11).
Boundary condition (10b) requires that vertical velocity be zero at
n = 1. From equations (12) and (1l), therefore, one has

sb(s)eBan=l= - :s:'l?'e"sn:|n=1 ;  Db(s)=- P28
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Hence the potential ¢, of the incoming waves is determined by

- e-s(z-n)

52(8311)
(13)
- £2(g +1 - 2)

o5(&,n)
end the potential in the region of the plate is

p=-%2(t-1) -2t +1q-2)

I the potential ¢ over the rear of the airfoil is written in the
form

CP(E,TI) = <P2(§,Tl)+ (Ps(ﬁ;"'l)

and §g is assumed expressible by terms of the form ag(s)e™®N, the
boundary condition (10a) yields

-sfe_s(a-n)lFo - sas(s)e'sn]n=o = sgf

Thus ag(s) = - fe™2® - £, s0 that
og(t,m) = - £(6 -1~ 2) - £(¢ - n)

The potential over the rear of the airfoil is then given as follows:

o(e,n)=-f(t -n-2)-£(¢ +n - 2)-£(t-1) (1ka)

or finally
o(x,y) = -—[F(x Boy -ml) +Fx+Boy -ml) +F(x~Boy)] , ml <x-Bgy <1
(1¥p)

It remains now to find the expression for wave drag on the surface.
In the physical variables, the totel wave drag is

a]?;, - (P - P°>y_o & gx = afoch(x,o) £ ax (15)
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vhere dg = poU02/2 is the dynamic pressure in the free stream of density
Po+ With the substitution, from thin-airfoil theory, Cp= - (2/Uo)(d0/dx),
the pressure coefficient on the airfoil surface is

2
°p=gF'(Jf)., 0 <x<ml

cp=£[F'(x)+2F'(x-m7-)] ’ m<x<l ?

Po
(1/2<m <1)
)
and the drag, expressed in coefficient form, can be written as
3
1 , 1
ca =gy [ I +mx-m)Paxsgly [ r0)%x, 1/2sms1
Bol Uy BO?'( ) -
1-m)1
L 1
cd:B_o'L.‘/; [F1(x) P ax s m>lJ
(16)

If the reflecting plates of the configuration are designed for a fixed
height h, formulas (16) give the drag coefficient of a shrouded airfoil

of arbitrary shepe for Mach numbers Mo >~1 + 12/16h2. When
Boh = 1/4 (m = 1/2), the waves are reflected from the forward portion

of the airfoil onto the rearward as in sketch (a) , and for m > 1 the
reflected waves do not intersect the airfoil. Formulas (16) thus yield
results for an airfoil with or without shroud.

Consider, as a simple example, the shrouded biconvex airfoil section
whose upper surface is defined by
2t,
F(x)=72—x(7.-x), 0<x<1 (17

where to 1is the maximum thickness of the airfoil. The drag coefficient,
given by formilas (16), is then
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380 \ 1
. (18)
_ 16 (%o
= 3_50. T) s m>1

with the paremeter m = 28,h/1. It
is seen in sketch (e) that for this
special case, the value of B cg for

1/2 <m <1 is always less than its
value for m > 1, and that a relative

minimm occurs at m = 1/J2. If the
ratio - h/1 is fixed, formulas (18)
give the drag of the shrouded airfoil
as a function of B for By > 1/kh.

Sketch (e)

Shrouded Airfoils Having Zero Wave Drag

Determination of shape.- Although formula (16) for the drag coef-
ficient will in general be greater than zero, there exist classes of
airfoil shapes for which the drag is theoretically zero. Since the two
integrals in the first expression in equations (16) can never be negative 3
the necessary and sufficient condition that the drag vanish is that

Fi(x) = - F*(x - m1) , ml<x<1l
(192)
Fi(x) =0, (1 -mi<x<m
After integration, these relations become
1 - 1
> F(mi) - F(x - ml) = F(x) - EF(mZ) , ml<x<l1
(19v)

F(x) = F(m1) , (1 -m)l <x<m

Thus the airfoil can be drawn in an arbitrary manner from x =mil +to
x =1 and the forward portion of the airfoil shape in the interval
0<x<(1-m)l is determined; the portion in the interval
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(L-m)l <x<ml is
f:é.at)a.nd equal *zo) .
F(ml). Sketeh (f Forword ion -

shows the geometrical P Flml) - Fix-ml) "5 "1 &iﬂed

construction of the Flx)- - F{ml)
profile. The upper R‘;:’ed‘;[f’e':m bitrarlly
half of such an air- ' |
foil is equivalent to - |————- > -

the lower wing of the g — - 4P,
linearized version of
& Busemann biplane
arrangement, while the
lower half is the upper Sketch (f)
wing.

fe X

i

For the special case when m = 1/2, as in sketch (a), equations (19b)
can be written in the form

F(x) - %F<%> = %F(%)-F(x-%) , ll2<x<l (19¢)

If, moreover, the airfoil is assumed to be symmetrical fore and aft,
F(x) = F(1 - x) and equation (19c) becomes

F(x) - %‘-F(%) = %F(%) - F(% - ) , O<x<1/2 (194)

In this event the forward half of the airfoil has odd symmetry about the
ordinaste of the quarter-chord position and, similarly, the rear half has
odd symmetry about the three-quarter chord position. It is also found

that the pressure distribution on the airfoll has fore-and-aft symmetry.

Drag for off-design condition.- A shrouded airfoil whose geometry
satisfies relation (19a), however, will only have zero drag for some
particular value of the parameter m, say m,. If such an airfoil is
moving so that the parameter m is different from m,, formulas (16)
for the drag coefficient become

1 1
cd=i7.f[1“'(x)]2dx-_§" f F'(x-mol)F'(x-ml)dx, 1/2<m<mp<1)
Bol v, Bozmol

l 1
cs = if[F'(x)]adx-—g—f F'(x-mol)F'(x-mi)ax , 1/2 <mp _<_m51>
Bo? v, Bol vy

I fl
cg = — [Fr(x)]%ax , m> 1)
Bol Yo (20)
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As an example, let the upper
surface of the airfoil (shown in
5{9 e sketch (g)) be defined by

Of——— 0 N p(x)

2ty
sz('l.-x s 0<x<1/2

2t
=—i-29-(l-x)2, Z/25x52

Sketch (g) (21)

If the design of the configuration is such that 28oh = 1/2 (i.e.,
my = 1/2) , relation (19a) is satisfied so that there is no drag. When.

1/2 < 2B,h < 1, however, the drag coefficient for the airfoil is given,
from equation (20) , by

cq = <t° (- m® + m® - 1) , 1/2<m<1
3Bo

(22)
< ) m>1
3Bo )

aq A plot of Bgycg/(to/1)® against m
ﬁr is shown in sketch (h) for values of
m greaster than 1/2. Below m = 1/2
the calculations become more involved

\— . but the same general method is
® S 6 T m B 9 b appliceble.
Sketch (h)

BODY OF REVOLUTION WITH SHROUDING TUBE

Evaluation of Wave Drag

The solution of equation (9) for the case of the body of revolution
(i.e., wvhen v = 1) is

3(s;m) = a(s)Ko(sn) +b(s)Io(sn) . (23)

where Watson's notation (ref. 6) for the Bessel functions X, and I, is

used. Over the forward portion of the body the wave system is outgoing
and the solution can be formulated from the first term in the right
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menber of equation (23). In order to impose the boundary condition (10a) )
one employs the relation

X sa(s)K,(sn) = - a(s)
on ]

the last expression holding by virtue of the fact that 1 is small on
the body surface. The boundary condition then yields, for £(0) = 0 )

_ _ BA(s)
a(s) = » (2u)
vhere the quantity A is
2 2
A(E) = pr2(e) = E) o AR() | 5(x) (25)
Boh Boh Boh

S(x) being the cross-sectional area of the body. The solution over the
forwerd portion of the body is thus

B(esm) = - = sh(s)Kg(en) . (26)

From equation (26) and the boundary condition (10b), the potential
@z of the incoming waves from the shrouding tube can be calculated., If
the Laplace transform of ¢, is assumed expressible in the form

Fa(s5n) = b(8)Io(en) , 22 = sb(s)I(sn)

™

the boundary condition at 7 = 1 yields

__ s7K(s)Ku(s) | _ si(s)Ky(s)
sb(s)I,(8) = 2“1 5 . b(s) ——ml(t:)

Thus @, 1is given as follows:

$.(s5m) = - sA(8)K,(s)Io(sn) . 9, _ _ 82A(8)Ki(8)I,(sn)
2 25I,(s) on 2xI,(s)

(27)
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Let the potential ¢ over the rear of the body be written as
o(&,m) = 92(&,m) + pg(E,n) where @y is assumed to be given by the
terms of the form ag(s)Ko(sn). In the previous case of the airfoil,

the normal gradient of @, &t the airfoil surface was of the same order
as the imposed boundary condition and it was necessary to take proper
regard of @, when 'equation (10a) was satisfied. In the present case

the normal gradient of @, is of higher order (at the body surface) in
comparison with the contribution of ¢, and the boundary condition is
satisfied within the accuracy of the theory by the relation

as(s) = - 5= sA(s) ,  A(t) = =Bo23(¢) (28)

The solution over the rear of the body is therefore

(29)

5= - sA(s)K,(8)Io(sn) ) sA(8)Ky(s1)
2xT;(8) 2x

In terms of the physical veriables, the drag D of the configura-
tion can be written as an integral of pressure over the surface of the

body:

z -
ED; =f <P qu° 2:F(x) % ax (30) -
(o]

Since for slender bodies of revolution the pressure-veloeity relation
becomes

it follows that the drag integral is, in terms of the dimensionless

varigbles,
v ] aa
O]E“ (31)

where the Laplace transforms of ¢ are given by equation (26) for

0 <t <2 and by equation (29) for 2 < § < 2/m < 4. Proceeding to the
evaluation of the drag integral, we find from equation (26) that for
small values of 1
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2 - L () (on) = 2

where 7, is Euler's constant. From equation (29), similarly,

_ 2 - K, (s)
_QCR = - _Z;A(B)Ko(sq)'- A(s) i( y I (sn) .

= %?t E(s)(ln 3+ 7o> - s—; A(s) IZ:J;E:;

5.8 2 1(a) Ka(8) 1
L - L Memalon) - £ Ks) 5 1" (o)

~ SA(s)
‘2::: J

15

(32a)

(320)

From these expressions, the inverse transform can be written explicitly

on the surface of the body in the following form:
for 0<E <2

3

f
Pof . 1 3 ["am(e)in(e - £y)ae,

T'E'a_go

£
_ 1 " Bof_ L B 1 - __:l-_ n - -
%’g == A"(¢)1n - g—j; A"(E1)In(E - &;)aEy S A (¢ - 2)-)

:
%j; A (g - 2)alt - £2)ak; - = A"(0)a(t - 2)

(332)




16 NACA TN 3718
where Q(¢) is an influence function whose Laplace transform is

_1 e®K,(s) _
as) = | Soel 1] (34)

and where the usual restrictions A(0) = A!(0) = O have now been placed
upon  A(E).

The evaluation of the inverse transform of ((s) is given in the
appendix, It is shown that over the range of 0 < £ < 2 the relation

a(e) = - 210 228 4 m(e) (35)

40 holds, where T(t) is a power series
that is convergent over the range.
Sketch (i) shows Q(t), and the

35 ! accompanying table lists values of
/ the function and its component parts
30 / for O < E < 2.
25 -
ole) . / e i 2Ll we) | ae)
20 0.20| 0.033538 |0.122638|0.156176
lo 071029 | .246073| .317102
.60 .11353% | .4O3432| .516966
L5 / .80 .162601 | .568452| .T31053
A 1.00 .220636 | .T55683| .976319
10 . 1.20 .291665 | .9T06T6|1.262341
L/ 1.50| .383237 [1.220196|1.603k33
/ 1.60 .512300 [1.512421]2.024T721
5 v 1.80 .732936 [1.857148|2.590084
1.95] 1.174207 [2.157066(3.331273
2.00| o 2.266000{
% 4 8 12 6 20

Equations (33) now must be sub-
Sketch (1) stituted into equation (31). The
resultant expression is the drag of

the configuration. The linearity of the term Jp/0t in the integrand,
moreover, permits one to write drag in the form D = Dyp + Dy where

Dyp 1is the drag of the body as it exists alone in its own induced flow
field and Dy; is the drag of the body attributable to the induced

effects of the shrouding tube.
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Up to this point in the analysis no explicit use has been mede of
the assumption that the body closes .and, in fact, straightforward evalua-
tion of Dy, leads to the expression given by Ward (ref. I) and Frankl
and Karpovich (ref. T7) for open-ended bodies with finite slopes at the
base. If, however, the body closes or has zero slope at the end, there
results the simpler drag formule of von Karman (ref. 8).

o 2/m 2/m
%P. = - g_f A"(g)dgf A"(§1)1n|§ - £1|dka
o 1
o) o)
o 2/m 2/m
- b7 1 " dg dg,
&tf 7 A (e)A"(ea) £ (36)

o (o]

The interference drag is then

g [ 2 ()] 2w

2/m

= _ B2 a‘Pad.l‘-\.
= h‘[Zagdgg

where BQZ/Bg is given by the last two terms in the right member of egua-

tion (33b). Substitution into the equation for the interference drag
yields .

2/m 3 ’
]%i = h2[ A'(g)[Am(g - 2)+ A"(0)a(t - 2) +f Am(g-2)a(t - §1)d§1]d§

2
(37)

80 that the formula for the total wave drag for a closed body of arbitrary
shape becomes

2/m 3 )
‘% = hZ[ A'(g)[A"(g- 2) +A"(0)a(t - 2) +[ A™ (g, - 2)a(E - §1)d§1:| ag +
2/m 2/m
¥ A'(g)agj; %"—f—g-g);del , l2gmgl >
2Im n
& - %meg)dg[ %%ll a, , m>1 J
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In terms of the physical variables, using equation (25) » one may write
the drag in the final form

qlo=mj7:7's'(x)[s"(x- mil)+ Sm (o)n(-ﬁ-xl-- 2) {/:mzs'"(x- ml - xﬂﬂ(ﬁ‘—f)dxl]dxj
51,?_[3'( )d.xf Sx(’jgf ax, , 1/2<m<1l >
%:&f (x)d.xf 8 (x;,_) ’ m>1 )
o .
(38b)

vhere m = 213011/ 1. If the shrouding tube of the configuration is designed
for a fixed radius h, formulas (38) give the drag for a shrouded body of
revolution of arbitrary shepe for Mach mmbers Mo >w1+12/16h. When

= 1/2 the waves from the forward portion of the body are reflected onto
the rearwerd as in sketch (a). For m > 1 there is no effect of the tube
and the formula for the drag is the same as that of the body without
shroud.

As an example, consider the body of revolution whose generating curve
is defined by

o :
R(x) =—_L-29x(7.-x) , 0<x<1 (392)

vheres to is the maximum thickness (see sketch (J)). Here

8(x) = h?fe x2(1 - x)2

R o
l I 81(x) = —2 x(1-x)(1~ 2x)
o= /1 1 (39b)
" Bito® (.2 2 P
8"(x) = —2- (1% -6x1 +6x7)
am(«) = h&ﬁ'oz
Sketch (J) g 5™(x) 14 (2x-1) )

with frontal area 8p = wto2/4k. For m > 1 the second formula in
equations (38b) yields. ;-
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Cp = =2 =-33g<t7°->2 (ko) 2

qoSf _
8
Integration of the first relation in %.—
formulas (38b) for 1/2 <m <1 is /1 4
carried out numerically and the
results are shown in sketch (k). oo.,/\__é 3

For a fixed value of the ratio h/1,
this sketch gives the drag of the
configuration as a function of Sketch (k)
Bo for B, > 1/kh.

Shrouded Bodies Having Zero Weve Drag

In general, the value found from the drag formula (38) for a shrouded
body will be greater than zero. It is possible to obtain from this for-
mule, however, an integral equation whose solution will yield a class of
body shapes for which the wave drag is zero.l

Derivation of integral equation.- In the particular application to
be considered here, we take Boh = i/U (m = 1/2) and assume that A"(0)=0.
A further assumption to be made is that the body has fore-and-aft symmetry.
This implies that A(E) = A(%-¢) and, since no discontinuities are
allowed in the slope of the meridian section, A*(2) = O. Under these
conditions the first relation in equation (38a) becomes

3

D * " - 1 Phan(e,)
T - h2[A (g)[A (5-2)+\[A (e1-2)a(g - £1)a81 +5 J E—_—ﬁ— dgl]dg

(k1)

A sufficlent condition for the drag to vanish is that the expi-ession
within the brackets be zero, resulting in the relation

3

4 1
A™(g-2) +f am (g - 2)a(k - £1)aky += AEa)
2 [¢]

at, =0 2 L
E- t. €1 s <E<L

(k2a)

The solution of this integral equation for the function A(t) is required
in order to find the area distribution S(x) = B,h2A(E) of the body
whose drag is canceled by the shrouding tube.

While this part of the analysis was being carried out, Graham,
Beane, and Licher (ref. 9) published & paper treating essentially the
gsame problem from a different point of view.
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Solution of integral equation.- Equation (L42a) can also be written

3
E(e) = A"(¢) +f A"EL)¥(E - £1)dEy , O<E<2 (42p)

[e]

Wwhere
2
_ 1 1 1 "
E(¢) --;\[(5_ TR g)A(gl)dgl
X (143)
¥(e) = dig a(e)

In dealing with this integral equation it is advantageous to apply the
calculus of ILaplace transform because the equation contains the convolu-
tion of A" amnd V.

, Teking the Laplace transform of both sides of relation (42b), one
obtains

E(s) = s2A(s)[1 + s@(s)] " (4ha)
or

= _ 2% Ky (s)

E(s) = =2i(s) ———ne"sIl(s) (4p)

For a homogeneous equation of the type (42b) it is usually convenient to
assume that the unknown can be expressed in the form

E
A"(E) = f y(e2)a(t - E2)atn (145)

(o]

where the functions g and 7 are to be determined. Equation (44b) then
yields

#(s) = 7(s)E(s) —xal8)_ (46)

e8I, (s)

Now the quantity in the denominator of this relation can be canceled
by simply assuming

7(8) = ne™51,(s) . (b7a)
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or

7(&2)=_];i_, O<§252

Jea(2-¢2) B
‘ (k7o)
=0 ) Ex>2
so that equation (L46) reduces to
E(s) = g(s)e®K,(s) (48a)
or ‘
1+ ¢,
E(t) = | ———=e(t-t1)at (48v)
[ NEL(2+E,) ¢ e

From equations (U45), (47b), (48b), and the first relation in equa-
tions (43) , there results the following integral equation for deter-
mining the function g:

3
l+§l

——=% — g(&-E1)at
o NE(2+E,) ¢ aie

L 2 L L 31 1-t¢
__1 . dgf =2 (e, - to)at
ﬂ\[ [§-2-§1 §-2+§J] 10 NEa(2- Ep) 1.2 ©
(L49)

After integration and some msnipulation, relation (49) reduces to the
homogeneous equation of the first kind

2
f Ga(E2)k(t,6.)aE, =0, O<E <2 (50)
[o]
with unknowm
G1(&1) = g(t1) +e(2-&y) (51)
and kernel
K(E,E,) = L+E-E; tan-1 (2~ £1)(E-E1) (52)
V(e-£1)(2+ & - £1) (2+&-Ea)Ea

This expression obviously has at least the trivial solution G,(&;) = O,
or
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g(g,) = - g(2-¢y) , 0<éti1<?2 (53)

requiring simply that the function g in equation (45) be odd about
€1 = 1. For a function that satisfies this condition, it follows that
a formal solution of the integral equation (42) can be written as

E
A"(e) = | —==B1 _o(e-gae,, o 2 ke
omg(g £1)dE; <t< (54)
or
:
a() = [ Ve et tan | (54)

[o}

In order to avoid obtaining bodies with negative areas, however, the
function g satisfying relation (53) must be chosen so that

3
A(E) =L | |(e1-1)VE(2-€1) + cos2(1~Eq)[a(E - £1)dEs
2 [o]
(5ke)

is greater than or equal to zero. These formulas determine the shape of
the shrouded body for the range O < § < 2, while the rear half of the
body is obtained by reflection about & = 2. There is of course an
infinitude of fumctions for which the relation (53) holds, so that equa-
tions (54) actually Purnish an infinite class of body shapes whose drag
is canceled by & shrouding cylindrical shell. It will be shown later
that this function g can be related to the pressure coefficient on the
shroud.

The quentities defined by formulas (54) are continuous if g is
piecewise continuocus. It is apparent from these equations that the
restriction A"(0) = A'(0) = A(0) = O is met, and it can be seen by use
of equation (53) that the requirement A'(2) = 0 is also satisfied.
Moreover, it can be shown that if A!' is required to vanish-at £ = 2,
end if g 1is restricted to be piecewise continuous, the solution
G,(&,) = O used for equation (50) is the only one admissible here.

A simple function that satisfies the functional relation (53) is

g(&1) = Aoty , 0<éEi1<1

=7‘2(5)1"2) ’ 155152

(55)

Inserting this expression into the formula (5Lc) yields, for 1 < & < 2,
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TECHENICAL NOTE 3718

THEORETICAL WAVE DRAG OF SHROUDED

ATRFOILS AND BODIES

By Paul F. Byrd
SUMMARY

Formulas for the wave drag of shrouded symmetrical airfoils and
shrouded bodies of revolution of arbitrary shape are derived by means of
linearized theory. In the case of the airfoils the shroud consists of
flat plates, and for the bodies of revolution the shroud is a cylindrical
shell., The results obtained hold for a Mach number range dependent on
the geometry of the configuration. Expressions are also given for deter-
mining a class of body shapes for which the wave drag is theoretically
zero,

INTRODUCTION

A body moving at supersonic speeds has a wave drag which can be cal-
culated either from integrations based upon the pressure at the surface
of the body or by means of a momentum balance over a control surface sur-
rounding the body. The control-surface approach shows more clearly that
the wave drag is related to the trensport of momentum in the Mach waves
created by the body. This approach also suggests the scheme of reducing
or destroying the wave drag through the use of a shroud as first shown by
Ferrari (ref, 1). With. such a shroud the waves are caught and reflected
to the body surfaces where they may be absorbed without further reflec-
tion, From the standpoint of the pressure exerted on the body itself,
it follows that the reflected waves may strike the rear portion of the
body in such a way as to provide a buoyancy to overcome the resistance
of the body alone, The detrimental effect of the additional friction drag
due to a shroud is not included in the present study.

The principal object of the present investigation is to derive for-
mulas for the wave drag of shrouded symmetrical airfoils and shrouded
bodies of revolution of arbitrary shape., The airfoil is shrouded by flat
plates and the body of revolution is shrouded by a cylindrical shell,
Although many configurations are possible, the analysis here considers
the particular arrangement where the shroud extends at least far enough
forward to catch the Mach wave emanating from the body nose, and faxr
enough rearward to cast Mach waves on the base of the body. As a special
epplication of the resulis obtained, a class of body shapes, similar to
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those given by Busemann (ref. 2) and Ferri (ref. 3), are found for which
the wave drag is theoretically zero,

For either the case of the airfoil or the body of revolution, the
analysis is based on the assumption of linearized theory and on opera-
tionel methods using Laplace transforms, Ward (refs. 4 and 5) has shown
in considerable detail how operational calculus can be employed to treat
bodies of revolution and quasi-cylindrical tubes., A similar approach will
be followed here, except that Heaviside notation is not used.

To the order of the analysis employed, discontinuities in the slope
of the airfoill are admitted, while for the body of revolution the gradient
of cross-sectional area and its derivative are assumed to undergo no
abrupt changes. In actual practice, discontinuities producing fixed com-
pression waves would certainly upset the accuracy of the results even more
than for the airfoil or the body alone since the opposing surfaces offer
the possibility of shock-wave and boundary-layer interaction,

SYMBOLS
ag speed of sound in free stream
A,B cross-sectional area of body in dimensionless terms, Bihé
o
e section drag coefficient, ED—l
o]
c body drag coucfficient
D y g <. 2 qosf
. p - po
Cp pressure coefficient, -To—
D wave drag
£ function defined in equation (5), ﬁ
o
F function defining upper surface of airfoil or generating

curve of the body of reVolution
g function satisfying relation (53)

h distance of shroud from x axis
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;i:i;:;i’} Bessel functions (ref. 6)
1 length of body, or chord length of airfoil
o Eﬁzoh
Mo Mach number in the free stream
P locel pressure
Po pressure in free stream
q, free-stream dynamic pressure, -F%oz-
R radius of body
S(x) cross-sectional area of body
Se frontal area of body
to maximum thickness of body
Uo free-stream velocity -
b4 Cartesian coordinate in free-stream direction
y Cartesian coordinate, measuring v;artical distance for airfoil
and radial distance for body
Y, - Bessel function (ref. 6)
Bo Mo® - 1
1 dimensionless variasble introduced in equation (L), %
11 Mach angle, arc sin 3
Mo
£ dimensionless varisble introduced in equation (L), -Boih
Po ‘free-stream density
o(E,n) perturbation velocity potential in dimensionless terms, o(x,y)

Toh




L NACA TN 3718
o(x,y) perturbation velocity potential
Q influence function defined in equation (35)
() Iaplace transform of function
MATHEMATTCAYT, STATEMENT OF PROBLEM
Y| chy=x Consider a symmetrical airfoil
y=1/48,=h By =l-x OF slender body of revolution placed
~ /_ — / at zero angle of attack at Mach number
Uo,Mo 4 A N FR) My = Uo/ap > 1, where a, is the
/ N, Y™ gpeed of sound in the free stream and
0(’74_5 - >,y where Ugp, the free-stream velocity,
N, Bh 2Bh. yd is alined with the x axis. The ¥y
N / . yd axis measures vertical distance in
N N the case of the airfoil and radial
distance in the case of the body.
14—+ 172 +—1a— The nose of the body is at the origin
(B.h=1/4) of the coordinate system.
Sketch (a) In the configurations to be con-
=h sidered the airfoil is shrouded by
/— two flat plates and the body of revo-
NN lution is shrouded by a cylindrical
TN ‘\\ tube. The shrouding plates (or tubes)
. > are placed so that the distance h
<< x by which the shroud is removed from the
&F /,,«'Zﬂoh,\,'\’ 1 x axis is such that 1/k < Boh < 1/2,
\ .. S ’/"
o ><\\// where By = cot p =JM° - 1andl

(1/4<B,h<1/2)
Sketch (b)

[

Bo h g -

~.
~. "

(8.h>1/2)
Sketch (c)

is the body length. The shroud is
required to extend at least from

X = Boh to x =1 - Bpoh, but it would
produce no additional effects on the
body if it were longer. Sketches (a),
(b), and (c) show the geometry of the
configuration with either the airfoil
or body of revolution in three typi-
cal arrangements. If Boh = 1/4, all
the Mach waves from the forward por-
tion of the body are reflected onto
the rearward, and when Bgh > 1/2
there is no effect of the shroud since
the waves are reflected behind the
body.
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The upper surface (or generating curve) of the airfoil or body is
assumed given by the function

y=Fx (1)

It will also be assumed that the body closes at both ends (i.e., that
F(0) = F(1) = 0) and that the thickness-length ratio of the body is suf-
ficiently small relative to the Mach angle p that linearized theory
applies. As a result, the perturbation velocity potential o(x,y)
satisfies the partial differential equation

BO_-_-}_r'a';_o (2)

together with the boundary conditions

yl3_¢> - &

(3)
LQ =0 h -
(UO ayy=h ? BO st : BOh

where the parameter v equals O and 1, respectively, for the airfoil
end body of revolution. One then has the problem of finding a solution
of ¢, and from this to determine the drag of the configuration.

If dimensionless variables £, 1, ¢ defined by the relations

E=x/Boh , a=y/h, o(&n) =e(xy)/lon (¥
are now introduced, the expression [
.for the body surface, as given by AN

equation (1), becomes

(5)

with m = 285h/1, and sketch (b)

becomes sketch (d). The differen-
tlal equation is then

(I/2<m<])
Sketch (4)
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3_29._9.2&_ ﬁ.:o (6)

(n" S = (pot)” &= 0<t<2/m
o

<%‘§>=1=o, 1<t<2m-1

Operational methods based upon the Laplace transform are suited for
treating the basic differential equation (6) for either the airfoil or
the body of revolution. Denoting the Laplace transform of a function

g(e,n) by 8(s;n) where

(7

&(s3m) = f e~5Eg(E,m)at 8)
(o]

and employing this trensformation for relations (6) and (7), one obtains
the differential equation

2.
.88 _v¥_
saq) anz M an 0 (9)
together with the boundary -conditions
- 'v df
<nv %% =B e (Bo)” 2 ag (102)
o .

) @),

Once § has been determined from equation (9), the drag of the shrouded
figures can be calculated. In order to carry out the calculations, it is
convenient to treat the airfoil and body-of-revolution problems separately.
The analysis for the airfoil offers little in the way of novelty but will
be given first since it illustrates the framework of the methods employed.
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ATRFOIL WITH SHROUDING PLATES

Evaluation of Wave Drag

The solution of equation (9) for the case of the airfoil (i.e. ,
vhen v = 0) is

®(s3n) =a(s)e™®N 4+ p(s)es - (11)

Since vertical symmetry exists in the flow field » attention can be limited
to the upper half of the figure. Over the forward part of the airfoil the
downstream inclination of the outgoing waves indicates, furthermore, that
the second term in the answer (11) can be deleted. Imposing the boundary
condition (10a), one then has

[

-sa(s)e-sn]n=°= sf , a(s)=-%

and it follows that the perturbation velocity potentisl satisfies the
relations

o(s;n) = - F~50

(122)
o(&,m) = - £(¢ - n)
or, in terms of the physical varisbles,
U,
¢&J)=-£T&-Bw), 0<x-Boy<ml - 28y (12v)

where m=2Boh/7., 1/25m51.

The flow around the forward portion of the airfoil is given by equa-
tions (12); in order to predict the flow around the rearward portion ,
however, it is necessary to determine the nature of the incoming waves
from the plate. The velocity potential of these incoming waves cen be
obtained from the second term in the right member of equation (11).
Boundary condition (10b) requires that vertical velocity be zero at
n = 1. From equations (12) and (1l), therefore, one has

sb(s)eBan=l= - :s:'l?'e"sn:|n=1 ;  Db(s)=- P28




8 ' NACA TN 3718

Hence the potential ¢, of the incoming waves is determined by

- e-s(z-n)

52(8311)
(13)
- £2(g +1 - 2)

o5(&,n)
end the potential in the region of the plate is

p=-%2(t-1) -2t +1q-2)

I the potential ¢ over the rear of the airfoil is written in the
form

CP(E,TI) = <P2(§,Tl)+ (Ps(ﬁ;"'l)

and §g is assumed expressible by terms of the form ag(s)e™®N, the
boundary condition (10a) yields

-sfe_s(a-n)lFo - sas(s)e'sn]n=o = sgf

Thus ag(s) = - fe™2® - £, s0 that
og(t,m) = - £(6 -1~ 2) - £(¢ - n)

The potential over the rear of the airfoil is then given as follows:

o(e,n)=-f(t -n-2)-£(¢ +n - 2)-£(t-1) (1ka)

or finally
o(x,y) = -—[F(x Boy -ml) +Fx+Boy -ml) +F(x~Boy)] , ml <x-Bgy <1
(1¥p)

It remains now to find the expression for wave drag on the surface.
In the physical variables, the totel wave drag is

a]?;, - (P - P°>y_o & gx = afoch(x,o) £ ax (15)
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vhere dg = poU02/2 is the dynamic pressure in the free stream of density
Po+ With the substitution, from thin-airfoil theory, Cp= - (2/Uo)(d0/dx),
the pressure coefficient on the airfoil surface is

2
°p=gF'(Jf)., 0 <x<ml

cp=£[F'(x)+2F'(x-m7-)] ’ m<x<l ?

Po
(1/2<m <1)
)
and the drag, expressed in coefficient form, can be written as
3
1 , 1
ca =gy [ I +mx-m)Paxsgly [ r0)%x, 1/2sms1
Bol Uy BO?'( ) -
1-m)1
L 1
cd:B_o'L.‘/; [F1(x) P ax s m>lJ
(16)

If the reflecting plates of the configuration are designed for a fixed
height h, formulas (16) give the drag coefficient of a shrouded airfoil

of arbitrary shepe for Mach numbers Mo >~1 + 12/16h2. When
Boh = 1/4 (m = 1/2), the waves are reflected from the forward portion

of the airfoil onto the rearward as in sketch (a) , and for m > 1 the
reflected waves do not intersect the airfoil. Formulas (16) thus yield
results for an airfoil with or without shroud.

Consider, as a simple example, the shrouded biconvex airfoil section
whose upper surface is defined by
2t,
F(x)=72—x(7.-x), 0<x<1 (17

where to 1is the maximum thickness of the airfoil. The drag coefficient,
given by formilas (16), is then
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380 \ 1
. (18)
_ 16 (%o
= 3_50. T) s m>1

with the paremeter m = 28,h/1. It
is seen in sketch (e) that for this
special case, the value of B cg for

1/2 <m <1 is always less than its
value for m > 1, and that a relative

minimm occurs at m = 1/J2. If the
ratio - h/1 is fixed, formulas (18)
give the drag of the shrouded airfoil
as a function of B for By > 1/kh.

Sketch (e)

Shrouded Airfoils Having Zero Wave Drag

Determination of shape.- Although formula (16) for the drag coef-
ficient will in general be greater than zero, there exist classes of
airfoil shapes for which the drag is theoretically zero. Since the two
integrals in the first expression in equations (16) can never be negative 3
the necessary and sufficient condition that the drag vanish is that

Fi(x) = - F*(x - m1) , ml<x<1l
(192)
Fi(x) =0, (1 -mi<x<m
After integration, these relations become
1 - 1
> F(mi) - F(x - ml) = F(x) - EF(mZ) , ml<x<l1
(19v)

F(x) = F(m1) , (1 -m)l <x<m

Thus the airfoil can be drawn in an arbitrary manner from x =mil +to
x =1 and the forward portion of the airfoil shape in the interval
0<x<(1-m)l is determined; the portion in the interval
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(L-m)l <x<ml is
f:é.at)a.nd equal *zo) .
F(ml). Sketeh (f Forword ion -

shows the geometrical P Flml) - Fix-ml) "5 "1 &iﬂed

construction of the Flx)- - F{ml)
profile. The upper R‘;:’ed‘;[f’e':m bitrarlly
half of such an air- ' |
foil is equivalent to - |————- > -

the lower wing of the g — - 4P,
linearized version of
& Busemann biplane
arrangement, while the
lower half is the upper Sketch (f)
wing.

fe X

i

For the special case when m = 1/2, as in sketch (a), equations (19b)
can be written in the form

F(x) - %F<%> = %F(%)-F(x-%) , ll2<x<l (19¢)

If, moreover, the airfoil is assumed to be symmetrical fore and aft,
F(x) = F(1 - x) and equation (19c) becomes

F(x) - %‘-F(%) = %F(%) - F(% - ) , O<x<1/2 (194)

In this event the forward half of the airfoil has odd symmetry about the
ordinaste of the quarter-chord position and, similarly, the rear half has
odd symmetry about the three-quarter chord position. It is also found

that the pressure distribution on the airfoll has fore-and-aft symmetry.

Drag for off-design condition.- A shrouded airfoil whose geometry
satisfies relation (19a), however, will only have zero drag for some
particular value of the parameter m, say m,. If such an airfoil is
moving so that the parameter m is different from m,, formulas (16)
for the drag coefficient become

1 1
cd=i7.f[1“'(x)]2dx-_§" f F'(x-mol)F'(x-ml)dx, 1/2<m<mp<1)
Bol v, Bozmol

l 1
cs = if[F'(x)]adx-—g—f F'(x-mol)F'(x-mi)ax , 1/2 <mp _<_m51>
Bo? v, Bol vy

I fl
cg = — [Fr(x)]%ax , m> 1)
Bol Yo (20)
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As an example, let the upper
surface of the airfoil (shown in
5{9 e sketch (g)) be defined by

Of——— 0 N p(x)

2ty
sz('l.-x s 0<x<1/2

2t
=—i-29-(l-x)2, Z/25x52

Sketch (g) (21)

If the design of the configuration is such that 28oh = 1/2 (i.e.,
my = 1/2) , relation (19a) is satisfied so that there is no drag. When.

1/2 < 2B,h < 1, however, the drag coefficient for the airfoil is given,
from equation (20) , by

cq = <t° (- m® + m® - 1) , 1/2<m<1
3Bo

(22)
< ) m>1
3Bo )

aq A plot of Bgycg/(to/1)® against m
ﬁr is shown in sketch (h) for values of
m greaster than 1/2. Below m = 1/2
the calculations become more involved

\— . but the same general method is
® S 6 T m B 9 b appliceble.
Sketch (h)

BODY OF REVOLUTION WITH SHROUDING TUBE

Evaluation of Wave Drag

The solution of equation (9) for the case of the body of revolution
(i.e., wvhen v = 1) is

3(s;m) = a(s)Ko(sn) +b(s)Io(sn) . (23)

where Watson's notation (ref. 6) for the Bessel functions X, and I, is

used. Over the forward portion of the body the wave system is outgoing
and the solution can be formulated from the first term in the right
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menber of equation (23). In order to impose the boundary condition (10a) )
one employs the relation

X sa(s)K,(sn) = - a(s)
on ]

the last expression holding by virtue of the fact that 1 is small on
the body surface. The boundary condition then yields, for £(0) = 0 )

_ _ BA(s)
a(s) = » (2u)
vhere the quantity A is
2 2
A(E) = pr2(e) = E) o AR() | 5(x) (25)
Boh Boh Boh

S(x) being the cross-sectional area of the body. The solution over the
forwerd portion of the body is thus

B(esm) = - = sh(s)Kg(en) . (26)

From equation (26) and the boundary condition (10b), the potential
@z of the incoming waves from the shrouding tube can be calculated., If
the Laplace transform of ¢, is assumed expressible in the form

Fa(s5n) = b(8)Io(en) , 22 = sb(s)I(sn)

™

the boundary condition at 7 = 1 yields

__ s7K(s)Ku(s) | _ si(s)Ky(s)
sb(s)I,(8) = 2“1 5 . b(s) ——ml(t:)

Thus @, 1is given as follows:

$.(s5m) = - sA(8)K,(s)Io(sn) . 9, _ _ 82A(8)Ki(8)I,(sn)
2 25I,(s) on 2xI,(s)

(27)
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Let the potential ¢ over the rear of the body be written as
o(&,m) = 92(&,m) + pg(E,n) where @y is assumed to be given by the
terms of the form ag(s)Ko(sn). In the previous case of the airfoil,

the normal gradient of @, &t the airfoil surface was of the same order
as the imposed boundary condition and it was necessary to take proper
regard of @, when 'equation (10a) was satisfied. In the present case

the normal gradient of @, is of higher order (at the body surface) in
comparison with the contribution of ¢, and the boundary condition is
satisfied within the accuracy of the theory by the relation

as(s) = - 5= sA(s) ,  A(t) = =Bo23(¢) (28)

The solution over the rear of the body is therefore

(29)

5= - sA(s)K,(8)Io(sn) ) sA(8)Ky(s1)
2xT;(8) 2x

In terms of the physical veriables, the drag D of the configura-
tion can be written as an integral of pressure over the surface of the

body:

z -
ED; =f <P qu° 2:F(x) % ax (30) -
(o]

Since for slender bodies of revolution the pressure-veloeity relation
becomes

it follows that the drag integral is, in terms of the dimensionless

varigbles,
v ] aa
O]E“ (31)

where the Laplace transforms of ¢ are given by equation (26) for

0 <t <2 and by equation (29) for 2 < § < 2/m < 4. Proceeding to the
evaluation of the drag integral, we find from equation (26) that for
small values of 1
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2 - L () (on) = 2

where 7, is Euler's constant. From equation (29), similarly,

_ 2 - K, (s)
_QCR = - _Z;A(B)Ko(sq)'- A(s) i( y I (sn) .

= %?t E(s)(ln 3+ 7o> - s—; A(s) IZ:J;E:;

5.8 2 1(a) Ka(8) 1
L - L Memalon) - £ Ks) 5 1" (o)

~ SA(s)
‘2::: J

15

(32a)

(320)

From these expressions, the inverse transform can be written explicitly

on the surface of the body in the following form:
for 0<E <2

3

f
Pof . 1 3 ["am(e)in(e - £y)ae,

T'E'a_go

£
_ 1 " Bof_ L B 1 - __:l-_ n - -
%’g == A"(¢)1n - g—j; A"(E1)In(E - &;)aEy S A (¢ - 2)-)

:
%j; A (g - 2)alt - £2)ak; - = A"(0)a(t - 2)

(332)
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where Q(¢) is an influence function whose Laplace transform is

_1 e®K,(s) _
as) = | Soel 1] (34)

and where the usual restrictions A(0) = A!(0) = O have now been placed
upon  A(E).

The evaluation of the inverse transform of ((s) is given in the
appendix, It is shown that over the range of 0 < £ < 2 the relation

a(e) = - 210 228 4 m(e) (35)

40 holds, where T(t) is a power series
that is convergent over the range.
Sketch (i) shows Q(t), and the

35 ! accompanying table lists values of
/ the function and its component parts
30 / for O < E < 2.
25 -
ole) . / e i 2Ll we) | ae)
20 0.20| 0.033538 |0.122638|0.156176
lo 071029 | .246073| .317102
.60 .11353% | .4O3432| .516966
L5 / .80 .162601 | .568452| .T31053
A 1.00 .220636 | .T55683| .976319
10 . 1.20 .291665 | .9T06T6|1.262341
L/ 1.50| .383237 [1.220196|1.603k33
/ 1.60 .512300 [1.512421]2.024T721
5 v 1.80 .732936 [1.857148|2.590084
1.95] 1.174207 [2.157066(3.331273
2.00| o 2.266000{
% 4 8 12 6 20

Equations (33) now must be sub-
Sketch (1) stituted into equation (31). The
resultant expression is the drag of

the configuration. The linearity of the term Jp/0t in the integrand,
moreover, permits one to write drag in the form D = Dyp + Dy where

Dyp 1is the drag of the body as it exists alone in its own induced flow
field and Dy; is the drag of the body attributable to the induced

effects of the shrouding tube.




NACA TN 3718 17

Up to this point in the analysis no explicit use has been mede of
the assumption that the body closes .and, in fact, straightforward evalua-
tion of Dy, leads to the expression given by Ward (ref. I) and Frankl
and Karpovich (ref. T7) for open-ended bodies with finite slopes at the
base. If, however, the body closes or has zero slope at the end, there
results the simpler drag formule of von Karman (ref. 8).

o 2/m 2/m
%P. = - g_f A"(g)dgf A"(§1)1n|§ - £1|dka
o 1
o) o)
o 2/m 2/m
- b7 1 " dg dg,
&tf 7 A (e)A"(ea) £ (36)

o (o]

The interference drag is then

g [ 2 ()] 2w

2/m

= _ B2 a‘Pad.l‘-\.
= h‘[Zagdgg

where BQZ/Bg is given by the last two terms in the right member of egua-

tion (33b). Substitution into the equation for the interference drag
yields .

2/m 3 ’
]%i = h2[ A'(g)[Am(g - 2)+ A"(0)a(t - 2) +f Am(g-2)a(t - §1)d§1]d§

2
(37)

80 that the formula for the total wave drag for a closed body of arbitrary
shape becomes

2/m 3 )
‘% = hZ[ A'(g)[A"(g- 2) +A"(0)a(t - 2) +[ A™ (g, - 2)a(E - §1)d§1:| ag +
2/m 2/m
¥ A'(g)agj; %"—f—g-g);del , l2gmgl >
2Im n
& - %meg)dg[ %%ll a, , m>1 J
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In terms of the physical variables, using equation (25) » one may write
the drag in the final form

qlo=mj7:7's'(x)[s"(x- mil)+ Sm (o)n(-ﬁ-xl-- 2) {/:mzs'"(x- ml - xﬂﬂ(ﬁ‘—f)dxl]dxj
51,?_[3'( )d.xf Sx(’jgf ax, , 1/2<m<1l >
%:&f (x)d.xf 8 (x;,_) ’ m>1 )
o .
(38b)

vhere m = 213011/ 1. If the shrouding tube of the configuration is designed
for a fixed radius h, formulas (38) give the drag for a shrouded body of
revolution of arbitrary shepe for Mach mmbers Mo >w1+12/16h. When

= 1/2 the waves from the forward portion of the body are reflected onto
the rearwerd as in sketch (a). For m > 1 there is no effect of the tube
and the formula for the drag is the same as that of the body without
shroud.

As an example, consider the body of revolution whose generating curve
is defined by

o :
R(x) =—_L-29x(7.-x) , 0<x<1 (392)

vheres to is the maximum thickness (see sketch (J)). Here

8(x) = h?fe x2(1 - x)2

R o
l I 81(x) = —2 x(1-x)(1~ 2x)
o= /1 1 (39b)
" Bito® (.2 2 P
8"(x) = —2- (1% -6x1 +6x7)
am(«) = h&ﬁ'oz
Sketch (J) g 5™(x) 14 (2x-1) )

with frontal area 8p = wto2/4k. For m > 1 the second formula in
equations (38b) yields. ;-
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Cp = =2 =-33g<t7°->2 (ko) 2

qoSf _
8
Integration of the first relation in %.—
formulas (38b) for 1/2 <m <1 is /1 4
carried out numerically and the
results are shown in sketch (k). oo.,/\__é 3

For a fixed value of the ratio h/1,
this sketch gives the drag of the
configuration as a function of Sketch (k)
Bo for B, > 1/kh.

Shrouded Bodies Having Zero Weve Drag

In general, the value found from the drag formula (38) for a shrouded
body will be greater than zero. It is possible to obtain from this for-
mule, however, an integral equation whose solution will yield a class of
body shapes for which the wave drag is zero.l

Derivation of integral equation.- In the particular application to
be considered here, we take Boh = i/U (m = 1/2) and assume that A"(0)=0.
A further assumption to be made is that the body has fore-and-aft symmetry.
This implies that A(E) = A(%-¢) and, since no discontinuities are
allowed in the slope of the meridian section, A*(2) = O. Under these
conditions the first relation in equation (38a) becomes

3

D * " - 1 Phan(e,)
T - h2[A (g)[A (5-2)+\[A (e1-2)a(g - £1)a81 +5 J E—_—ﬁ— dgl]dg

(k1)

A sufficlent condition for the drag to vanish is that the expi-ession
within the brackets be zero, resulting in the relation

3

4 1
A™(g-2) +f am (g - 2)a(k - £1)aky += AEa)
2 [¢]

at, =0 2 L
E- t. €1 s <E<L

(k2a)

The solution of this integral equation for the function A(t) is required
in order to find the area distribution S(x) = B,h2A(E) of the body
whose drag is canceled by the shrouding tube.

While this part of the analysis was being carried out, Graham,
Beane, and Licher (ref. 9) published & paper treating essentially the
gsame problem from a different point of view.
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Solution of integral equation.- Equation (L42a) can also be written

3
E(e) = A"(¢) +f A"EL)¥(E - £1)dEy , O<E<2 (42p)

[e]

Wwhere
2
_ 1 1 1 "
E(¢) --;\[(5_ TR g)A(gl)dgl
X (143)
¥(e) = dig a(e)

In dealing with this integral equation it is advantageous to apply the
calculus of ILaplace transform because the equation contains the convolu-
tion of A" amnd V.

, Teking the Laplace transform of both sides of relation (42b), one
obtains

E(s) = s2A(s)[1 + s@(s)] " (4ha)
or

= _ 2% Ky (s)

E(s) = =2i(s) ———ne"sIl(s) (4p)

For a homogeneous equation of the type (42b) it is usually convenient to
assume that the unknown can be expressed in the form

E
A"(E) = f y(e2)a(t - E2)atn (145)

(o]

where the functions g and 7 are to be determined. Equation (44b) then
yields

#(s) = 7(s)E(s) —xal8)_ (46)

e8I, (s)

Now the quantity in the denominator of this relation can be canceled
by simply assuming

7(8) = ne™51,(s) . (b7a)
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or

7(&2)=_];i_, O<§252

Jea(2-¢2) B
‘ (k7o)
=0 ) Ex>2
so that equation (L46) reduces to
E(s) = g(s)e®K,(s) (48a)
or ‘
1+ ¢,
E(t) = | ———=e(t-t1)at (48v)
[ NEL(2+E,) ¢ e

From equations (U45), (47b), (48b), and the first relation in equa-
tions (43) , there results the following integral equation for deter-
mining the function g:

3
l+§l

——=% — g(&-E1)at
o NE(2+E,) ¢ aie

L 2 L L 31 1-t¢
__1 . dgf =2 (e, - to)at
ﬂ\[ [§-2-§1 §-2+§J] 10 NEa(2- Ep) 1.2 ©
(L49)

After integration and some msnipulation, relation (49) reduces to the
homogeneous equation of the first kind

2
f Ga(E2)k(t,6.)aE, =0, O<E <2 (50)
[o]
with unknowm
G1(&1) = g(t1) +e(2-&y) (51)
and kernel
K(E,E,) = L+E-E; tan-1 (2~ £1)(E-E1) (52)
V(e-£1)(2+ & - £1) (2+&-Ea)Ea

This expression obviously has at least the trivial solution G,(&;) = O,
or
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g(g,) = - g(2-¢y) , 0<éti1<?2 (53)

requiring simply that the function g in equation (45) be odd about
€1 = 1. For a function that satisfies this condition, it follows that
a formal solution of the integral equation (42) can be written as

E
A"(e) = | —==B1 _o(e-gae,, o 2 ke
omg(g £1)dE; <t< (54)
or
:
a() = [ Ve et tan | (54)

[o}

In order to avoid obtaining bodies with negative areas, however, the
function g satisfying relation (53) must be chosen so that

3
A(E) =L | |(e1-1)VE(2-€1) + cos2(1~Eq)[a(E - £1)dEs
2 [o]
(5ke)

is greater than or equal to zero. These formulas determine the shape of
the shrouded body for the range O < § < 2, while the rear half of the
body is obtained by reflection about & = 2. There is of course an
infinitude of fumctions for which the relation (53) holds, so that equa-
tions (54) actually Purnish an infinite class of body shapes whose drag
is canceled by & shrouding cylindrical shell. It will be shown later
that this function g can be related to the pressure coefficient on the
shroud.

The quentities defined by formulas (54) are continuous if g is
piecewise continuocus. It is apparent from these equations that the
restriction A"(0) = A'(0) = A(0) = O is met, and it can be seen by use
of equation (53) that the requirement A'(2) = 0 is also satisfied.
Moreover, it can be shown that if A!' is required to vanish-at £ = 2,
end if g 1is restricted to be piecewise continuous, the solution
G,(&,) = O used for equation (50) is the only one admissible here.

A simple function that satisfies the functional relation (53) is

g(&1) = Aoty , 0<éEi1<1

=7‘2(5)1"2) ’ 155152

(55)

Inserting this expression into the formula (5Lc) yields, for 1 < & < 2,
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A(e) = z‘h-g- [3(h§2—8g+5)cos'1(1— g)+ (£-1)(2t2- ke +15) VE(2-€) +

48(2- g)cos~ (2~ £) ~16(E2- e +6) V(E-1)(3 - e)] (562)

end, for 0 < £ <1,

A

A(E) = 35 [3(#&2- 8t +5)cos™ (1~ &) + (£~ 1) (262 ke +15) Vg(2 - 5)]
(56b)
A plot of the coordinates of the body 3
is shown in sketch (1) for the spe- ——,
cial case when the maximm thickness 7 N
ratio is 0.1 and the Mach number is J%@ V4 .
J3. A ey N
0“‘<\\ S
A simpler example is given by N yd
taking
J 0 ’
g(t1) =N1-¢81) , 0<Eti1<2 -

(57) Sketeh (1)

Substitution into formula (5kc) leads, for 0 < & < 2, to
A(E) = )1—‘8- [3(- h£2 + 166 - 13)cos~ (L1 - &) + ( - 263+ 142 - 35¢ +39) VE(2- §)]

(58)

a result which is the same as that obtained by Graham, Beane, and ILicher
(ref. 9). If the quantity A in equation (58) is chosen so that the
body considered in reference 9 has the same volume as that of the previous
example, the former body haes e maximum cross-sectional area 0.94 times as
great,

Determination of body shape when a portion of it is specified.- For
a function satisfying relation (53), it is seen that formulas (5L) yield
a.class of bodies having zero drag. Instead of prescribing the function
g éand then calculating A, however, it is possible to find the entire
shape of the body when only a portion of it is given. This is accomplished
by starting with equation (42a).

Equation (42a) can be put in an improved form by translating the
axes 80 that the origin is at the body midpoint. To this end, set
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E=o+2 , £1=0,+2

A(E) =A(k- &) =A(2+0) =A(2- ¢) =B(0) =B(-0) (53)

As shown in sketch (m) equation (42a)

Blo) can then be interpreted as an inte-
To be determlned gral equation in which B(g) is

—-L specified in the range -2 < g < -1 or

. /
) - 0 | 2 l<o<?2, and it is required to find
o B in the range 0 < 0 < 1 by inverting
th sion
Sketch (m) e expressi
lon
B"(03)
plo) = - = -2—1—2' doy (60)
g=-0;3

where p(o) is known and is given by

]

p(c)=_B"(2-o)+f B"(2-0.)¥(c - 0'1)do'1+—f B' (61) do, (61)
o)

with V¥(c) = dn/dd. A final change of variebles (02=17) reduces equa-
tion (60) to the form

) _ 1 [Tla/an)2NT(e/an)By Tl (62)

W 2 T-Ty

The singular integral equation (62) is a familiar one in aerodynamics.
Since

[ldTl [2~I_-—B(~I—):ldvl Bt (1)

its inversion is

O

[e]

* IJ'(\/—T—:L) N1 - T d.'l'l]
T=- Ty

or
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1 r__
1 _ 2 ' Tali( 72) 1-12 -
13(o)_——-It == [B (1)+[—— da]

(63)

Equation (63) can be integrated with respect to o; by inter-

changing the order of integration in the last term and imposing the con-
dition B!(0) = 0, we find

' ' - TaN1-g2-gN1 - 752
B'(U)=gl%(l—) sin'lc+%f u(z)1n| = it

o To “]l— 0'2"!'6'\/1- T22

d.Ta ( 6&)

Integrating once agein with respect to ¢ <fihally yields the expression

B(o) =B(1)+-EB—',I(1—)|:\/1— o2+0 sin'lc--’é] +

1
%f p(r2)} o In

o

Vi-02- N1-1752
N1-02+ V1= 152

TaN1l=-02+0N1l - 1%

'ra'\ll-cra—o"\/l-'rzz‘__r

(65)
for the value of B in the interval O < o < 1 when it is prescribed for
l<o<ia

As en example, specify B"(g) to be
B"(c) =A No(2 - o) (66)

in the interval 1 < o <2 and f£ind its value for the range 0 < o < 1.
It can be shown thet

(o}

(o] g
f 3"(2-0'1)\?(0'-0'1)5-0'1=7\f 401(_2'0'1)‘“0" 01)doy
o

=7\[~lo'(2+a) -No(2- o‘):| (67)
so that, from equation (61),

2 ——
w(o) =ANo(2 +0) +29A 012 - 01) do, (68)
T J 02 - gi2

e e i e st e e
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Substitution of this quantity into the inversion formula (63) leads,
after integration, to the result

1
wron_ 2N o No1(2+01) (1-093) f 2N Ta(2- T2) (722 - l)
® (U)_K‘Jl-da f 02- 0,2 dﬁl+1 0%~ 152
(69)
or finally
B"(¢) =AvNo(2-0) -2AV1-02 , O<o<1 (702)

Integration of this then gives

B! (o) =% [(c— 1) Vo(2-0) - cos=1(a- 1) - 201 =02 +2 cos"lo'] (70b)

or

‘B(O‘)=% [(02- 20 +3) No(2-0) - 2(62+2) V1-02+60 cos~lg+

3(1 - o)cos~1(g - l)] ;, O0<ox<1 (70¢)

-

Sketch (n) shows a plot of the coordinates of the body when the maximum
thickness ratio is 0.1 and Mgy =

3
. ——————————__§
,«"’ \\\
BP '/" \\
e | A
O-<-\____x/l____...—>—b /ﬂ f To be
N . — s 4 = -’-:l 0 | )
™, § //
\\E. — o" ”~
3
Sketch (n) Sketch (o)

If the function B(c) is specified in the range -1 < ¢ <O or
0 <o <1, equation (42a) may also be employed to find B(¢) for
-2 <o<-lorl<o<?2. (See sketch (o).) In this case we may write

the relation (42a) in the form
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B"(2- o) -f Bm(2- o‘)Q(o‘ 01)d61+—f B"(“) doy -
1

0' "‘0’1
1
1n
f BM(2-0.)0(0 - o‘l)dal----f B(Ul) do, ; l<o<?
5 0' -0'1 :

(T1)

where the last term on the left, as well as the term on the right is
unknovn. Applying the inversion formulae for the airfoil equation umder
the condition that B"(2) = 0, yields the equation

2

&) =5"(0) + [ E(0,02)8"(62)ao (72)

1

where the known functions G and H are given by

2 3
2g Pl-- O‘Zf h; (7o) T22-1
|—gre—haty o d
oo)= 5 0%-1J o272 J -T2 T2
1 2T2 * B"(o'l)
hy(72)=B"(2~ 12) + B"(01)¥(72~ 2+ 01)doy + — 55 5-0'1?
2 T2~ =0y
ar /‘r 2.1
(o, 0'2)"— ’ = / 2 > 2 = ¥(12-2+02)
l o' - Tp ‘\“4- 1‘2 )

(73)

Relation (72) is a Fredholm integral equation of the second kind snd can
be treated by well-known methods (see , €+8., ref. 10), although an inver-
sion formule for the equation cannot, in general, be written in closed
form as was done (eq. ?62)) for the previous case.

Drag for off-design condibtion.- If the body geometry satisfies the
integral equation shaa), the drag will be zero only at the design con-
dition B, = 1/kh 1/2). The value of the drag of such a body for
1/2 <m < 1, however, can be calculated by means of equation (38a) and
will lie 'be'bween zero and that for the body alone (m > 1). Substitution
from equation (L42a) into formula (38b) gives the equation
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?;D: =ﬁ/: st(x) Tsﬂ(x_ml):\zzml S (x-mi - xl)()(%l)dxg] dx - )
R N ST
12
S x-(1/2) . - .
O L LY (K CEERY O S
(%)

Consider, as an example, the shrouded body whose geometry is defined
by equation (58), that is,

s"(x) =)‘—21 [1(3- L ZZE> /2‘1. <—%‘--%>-cos'1<l- L %‘-)] , 0O0<x<1f2

s"(x)=s"(1 -x) , 1fe<x<1
6; ____ TFor m = 1/2 the configuration has
zero drag, since A" or S" is a
4 solution of the integral equation (42a).
}T&E Integration of equation (74) is carried
2 out for this particular case for
' 1/2 <m and the results are shown in
Gg—sL+—5 25 sketch (p). Calculations for m < 1/2
m become exceedingly involved and cannot

be obtained from the analysis, although
Sketch (p) the same general method is applicable.

Pressure Distribution

Preasure coefficient of shrouded body of erbitrary shape.- It is of
interest to determine the pressure distribution of a body of revolution
shrouded by a cylindrical shell. From equations (33), the pressure
coefficient

=£-_?g=______<> (
P o ox U2 \Ox Bo ok




NACA TN 3718 29

on the same body in the range O < £ < 2 is given by

£ 2
__ANE) 3 Bof L 3 [y - (@
o=, ™72 *up, o | A"(1)1n(g - £1)aks - (FF (75)

and, for 2< £ <2/m <k, by
§

=_A"(§) Bof 1 A 1 - _<£2 1l an -
Op= -5 1 o tamg SE, A"(e2)1n(e - £2)aks -(Gp ) + 5= A"(0)a(e - 2)+
3
LA"(g-ahif Am (g, - 2)a(E - E1)dEy (751p)
Bo Bod,

In terms of the physical variables, using equation (25), we write these
formulas in the final form -

X

11 2
Cp= - 5 ’(}l In Bf-(%) +':1L_r -a-a; 8w (x,)In(x- x,)dx; ; 0<x<ml
)
(762)
® 2 a x
Cp=- 2 :(rX) 1 Bt %) +3 S;[ 8 () 1n(x - x)ax; + 8"(0)a( 22 2>+
X-ml
S"(x-ml) + f S (x-ml -~ xﬂﬂ(%)dxl 3 ml<x<1 (761?)

(o]

In the interval O < x <ml the pressure coefficient is the same as that
of the body without shroud, while for ml < x < 1 it is affected by the
last three terms in formula (76b). One sees from equations (76a) and
(76b) that at x = ml the coefficient has a jump equal to S"(0), which
means that the pressure is not continuous unless the body has a cusped
nose.

For the particular exsmple of the body whose generating curve is the
paregbolic arc :

R(x)=% x(1~-x) , 0<x<1 (7;()

one obtains for the forward portion of the body
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2
Cp=14 .1312)[1+16—-22-—-2( 6-—+6xa 1nB° (-—)] 0O<x<m

and for the rearward portion (78a)

Cp—h< >[1+16-—-22—-+2:t 1+6m+6m=+6 %-6%‘-12%19-
< 6_+6 xz 1 B0 °(- >+2m<n—- )
&/)-m
12::f <2%-2m-l—22>0<§ z)dz]; ml <x<1 (78b)
o

30¢
!} A sketch of the body of revolution
25t f: having maximum thickness ratio equal
to 0.1 and a plot of the corresponding

pressure distribution et Mach number

N2 are shown in sketch (g) for

m = 1/2, and also for m > 1 (when the
body is without shroud). The drag

of the shrouded body 1s shown in
sketeh (k).

Pressure coefficient of zero-
drag body.- When the body geometry
is such that relation (42a) for zero
drag holds, formula (75b) for the
pressure coefficient on the rearward
portion of the body (i.e., in the
intervel 2 < £ < %) reduces to

Sketch (q)

4

- Bof 3 " =
p=- An;gf;) & - gg[A (él)ln(gl-ﬁ)dél—<%§->

so that for,0 < x < 1/2
X

" 2
cp=- 8 10 BE(B) 112 [oretae-mdan (190)

14
(o]
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and for 1/2<x<1

1" 2 z
Cp=- S¥) 1n Bf-(%) Lo 8"(x,)In(x; ~ x)ax; (791)

T d3x

Since the body here is symmetrical fore and aft, that is, since
8"(x) = 8™(1 -x), it can be seen from equations (79a) and (79b) that
the pressure distribution on the body also has fore-and-aft symmetry.

It remains to relate the pressure coefficient on the shroud to the
function g in formulas (54%). From the first relation in equation (32b)

_g_o;; -- %(&2). [T1(8)Ko(sn)+ K1 (8)To(sn)]

8o that on the shroud (i.e., at 17 = 1)

5 __ 2 op_ s23i(s s :
= o 32 =Rk [Ta()%o(8)+ Ea(8)To(e)]

__8A(s)
BoﬁIJ.(S) (80)

Teking the transform of equation (54e), one obtains

82A(8) = %e™5T, (8)&(8)

_ y__8%i(s)
&(s)= el (81)

Thus from equations (80) end (81)

sCp = 3-%5-(3)- (82)

or

80 that the pressure coefficient on the shroud is related to g by

g(&) =BoCp? (1 +&) (832)
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It follows from this equation and relation (53) that

g-l -

" BoCp= | gltl)at, , 1l<t<e2
oCp [ 1)dE;
s-t ? (83b)
BoCp= | e(t)dts , 2<E<3
oCp [ 1)dga
or J
Cp(L1+8) =Cp(3-¢) (83c)

that is, that the pressure distribution on the shroud has fore-and-aft
symmetry about the body midpoint §& = 2.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif, Apr. 6, 1956
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APPENDIX A
EVALUATION OF AN INVERSE TRANSFORM

The Laplace transform of the influence function® § was expressed
in equation (3%) by . .

f(s)=21 [ﬁ_eSM. 1] (a1)

8 |e~PI,(s)

In this section, representations of the inverse transform

atiw
a(e) = lim —L- f e28n(z)az (a2)
2
W —> o ﬂa—im

are given in two forms. The first form, which involves a series of
Bessel functions, enables one to find the nature of the singularity.
The other form gives the singularity explicity and is more convenient
for computational purposes, as in the numerical integration of equa-
tions (38), (63), and (76).

Evaluation of the line integral (A2) can
be obtained in the usual way by transforming
the path of integration into a closed contour [ A
and epplying the calculus of residues. The G
integrend possesses a simple pole at the D
origin and an infinite number of poles (roots
of I,) along the imaginary axis. The inte-
grand also has & branch point at z = O due H
to K;, so a closed circuit is chosen as

indicated in sketch (r). Since for a number
@ >0 i Sketch (x)

Hal

|8 (relf)] < R%"- N -t<8<x (a3)

The integral taken over the ABD and GHL of the circle c; of radius R
can be shown to go to zero as R -> w. According to Cauchy's residue
theorem, the evaluation of equation (A2) is then

1This influence function was derived and first investigated in some’
unpublished work of Max. A. Heaslet of Ames Aeronautical Lsboratory.
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a(e) = ) 7(t) - a(8) (ak)
where |
< .
a(e) == [ eZti(z)az+=- | eZin(z)dz+—= teel® 10)4(celd
mi/;e +2ﬁ1£e 2+ 5 e—>o:,[e 2(eelf)a(eelf)
(85)

and r; is the residue of ezgﬁ(z) at z = £iN,, the quantity Ap Dbeing
the mth root of J,(A) = O. We now consider the two terms on the right
of equation (Al) separately.

Since
L [213(2)] = 21e(2)

a particular member r, under the summation sign in equation (Ak) is
glven by

e e~ B
Use of relations | |
Kt =+ 2 Ya(hg) 5 Toltihg) =To(hm) (a7)
then yields the result
Zrm =mZL i}% cos(t + 2)7\;,1 (a8)

for the total contribution of the residues.

The last term of equation (Ak), which represents the contribution
resulting from integration over the path DEFG in sketch (r), may be
written from equation (A5) in the form °




e s o e ————— e e — i A o s
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cteell ezee’ Kl(eeie)

€
gtelat| _atel® Ky (tel®)
Llim f = 5
Q(g) 21(21 € —> 0 t Il(teiﬂ)
‘[

[ o]
m = -
f ottemint [ cote™ M (4o-im)
t

~xjdt+1 {do
Ix(te-1n) I, (eeif)
(49)
If the relation
i
Ka(te*) _Ka(t) , (410)
Il(te-i) Il(t)
is employed, equation (AQ9) then gives
® ( =3
Q(g)-—— lim ar-zf e-tltre) at+lf o(t+2) eel® Ky(eel®) 4
€E—>0 c t T Y Il( eeie)
(A11)
or
Q(§)=,%[:r+%-(§+ 2)%+1n 2 (§+2)] (a12)

Finally, using relation (A4), (48), and (Al2), we have the equation

9(§)=%—.t [,rmzl %%‘% cos(§+2))\m”t-%+(§+ 2)%.1n 2(t+ 2)] (A13)

for the inverse transform of the influence ﬁmctior{.

The nature of the singulerities in this expression may be found
heuristically as follows. Except for the last term, which has a loga-
rithmic infinity at ¢ = -2, the only possible singularities in equa-
tion (A13) come from the series involving Bessel functions. Since the
singularities due to this series are not affected by omitting the first
N terms, we substitute the asymptotic expansions (ref. 6)
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Jo(?\m) ﬁ?\m fOS(?\m"E +aln: sin<7\mhﬁ_->+. . o] > (Al’-l-)
Yl()\m) = ’Km —- cOS()\m -'E>+-8—)\3-£ sin{A\pm - -E)-l' o o .] J
so that
——7\3'(7(“;;) cos(&+ 2)M=nz °°S(-;+ 2)7"“[ 1+o<)m>]
m=N ° m=N -
) -i. cos[<m+%>(g+ 2)::] _ i, sin m+-]¢>:r§
4 -y L mil
(a15)
when N is sufficiently lerge., Now
o gin|m+ ::!_.-'. 1+s‘in1t-§-
E) T _ wg . 1 L

1sin£'

which, near £ = *2 behaves like 1n(2+&)/(2-¢t). One can see from equa-

tion fAl3) that the function Q has only a logarithmic singularity at
£ =2,

EVALUATION OF ©(&) BY ALTERNATE METHOD

The expression (Al3) for the influence fumction 2 is unsuitable
for numerical work, so that it is desirsble to have an equation which is

more convenient a.nd which also isoletes the singular pa.rt We therefore
seek an evaluation in the form

ae)=-2mB2ten(s) , oge<2 (817)
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vhere T 1is a convergent power series
7(¢) = Z ast (a18)
j=o

If the function &(z) in the line integral
a+iw }
a(t) = 5= f e?£i(z)az (A19)

a~-iw

is expanded as an asymptotic series, the desired series expansion of
0(t) can be obtained through term-by~term integration.

For large values of Izl , asymptotic expansions of K,;, I, are

.K_-,_(z) 2/21_; e"ZF(-lé'-> : | arg z| < 3n/2

I,(z) = e? [F(- -:-L->- ie~3%p (l>:| -1/2 < arg z < n/2 (0]
where
& h
1)_ bm
F<E> 1+; (2z)™
) (az)
] _ (U™ (en 1) [(2m) 11® _ (2m+1) (3 - 2)
b= (1,m) 16™(2m - 1) (m)> = P2 )
so that for small ¢ equation (A19) yields
8+l I_
g) = L1 ezt F(1/z) -1
o &daJ;.m 2 |F(-1/2) - 1e72%8(1/2) w (122)

The term e~22F(1/z) in the denominator can be neglected if Re(z)
(L.e., if a) is chosen sufficiently large and positive. Thus
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atico
. 1 gz [ F(1/z) _ ;
a(g) = o a[ ez (-1/z) l]dz (A23)

Expanding the bracketed term as a series in 1/2z, one obtains

a+ioo 0

g(g)g.élaerE - B dz

oh Y
a-iw m=1

or, after term-by-term integration
m
Cm
9(5)'—'?;;(—%) , O<e<e (azk)
m=1

where the coefficients cp may be determined in succession from the
relations

Cy = Ebl z
Ca=Ciby

m
cm = cm-l.bl- cm_2b2+ e o o°F ("l) clbm-l+[l+(-l)m+1]bm )

If use is now made of the expansion

1n(2 - £) = In e-i%@m . (a26)

m=1

it Pollows that the series T in equations (Al7) and (Al8) is given by

7(¢) :Zé [ﬁ_ﬂ@m , o<g<e (a27)




NACA TN 3718 39

and that the influence function  can be expressed in the final form

n(g)=-%1n3%£+m2%[ﬁ-%]<%>é, 0O<t<2 (a28)

e ae — e e —
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